UCRL-88007
PREPRINT

ODEPACK, A SYSTEMATIZED COLLECTION
OF ODE SOLVERS

Alan C. Hindmarsh

August 1982

This is a preprint of a paper intended for publication in a journal er proceedings. Since-
changes may be made before publication, this preprint is made available with the un-
derstanding that it will not be cited or reproduced without the permission of the author.

This paper appears in Scientific Computing,
R. S. Stepleman et al. (eds.), North-Holland,
Amsterdam, 1983 (Vol. 1 of IMACS Transactions
on Scientific Computation), pp. 55-64.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of
the United States Government. Neither the United States Gevernment nor the
University of California nor any of their employees, makes any warranty, ex-
press or implied. or assumes any legal liability or responsibility for the ac-
curacy, completeness, or usefulness of any information. apparatus. product. or
process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not mecessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or the Uiniversity of California. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United
States Government thereof, and shall not be used for advertising or product en-
dorsement purposes.

ODEPACK, A SYSTEMATIZED COULLECTION OF OOE SOLVERS *
Alan C. Hindmarsh

Lawrence Livermore National Laboratory
Livermore, CA 94550, USA

The growing number of good general purpose solvers for initial value problems for
ordinary differential equation (ODE) systems has fueled discussions on the idea of a
systematized collection of such solvers, ODEPACK. Within recent years, a tentative
user interface standard was developed, and an initial collection of five solvers was
written. These solvers handle stiff and nonstiff problems in standard (explicit)
form, problems in linearly implicit form, full Jacobians, banded Jacobians, general

sparse Jacobians, and problems with rootfinding (g-stop) requirements.

Two of the

solvers have automatic (stiff/nonstiff) method selection. These solvers are
described briefly here, and their capabilities are illustrated with an example
problem arising from a model of atmospheric kinmetics-transport in two dimensions.

1. INTRODUCTION

Initial value problems for ODE systems have
prompted a great deal of effort in numerical
methods and software development. Stiff ODE
systems are now recognized as being particularly
common, and are of course much more challenging
numerically. Here stiffness can be roughly
defined as the presence of one or more fast
decay processes in time, with a time constant
that is short compared to the time span of
interest. Good general purpose solvers have
been available for up to 20 years, and the

number of such solvers has grown quite sizable.

Among the more popular of these are the GEAR and
EPISODE packages and their variants [1],
developed at LLNL, which use various forms of
BOF (backward differentation formula) methods in
the stiff case, and implicit Adams methods in
the nonstiff case.

Faced with the large number and variety of
ODE solvers, both the users and the suppliers of
this software have expressed a desire for
standardization. In other areas, amalogous
pressures have resulted in "systematized
collections™ of software (EISPACK, LINPACK,
etc.) which meet high standards of quality and
uniformity. Efforts to produce a similar
collection of ODE initial value solvers have had
some success. A tentative user interface
standard was developed, and an initial
collection, called ODEPACK, was then generated.
The starting point of this collection is a
package called LSODE, which is the result of
Tewriting the GEAR [2] and GEARB [3] solvers in
conformity with the standard interface. Several
variants of LSODE were then written to solve
other problem clases.

*This work was performed under the auspices of
the U.S. Department of Energy by Lawrence
Livermore National Laboratory under contract No.
W-7405-Eng-48, and supported in large part by
the DCE Offlce of Basic Energy Sciences,
Mathematical Sciences Branch.

In the next section, the methods used in the
ODEPACK collection are summarized briefly,
Following that is a short description of each of
the five solvers in the existing collection, as
it is now available, Finally, a two-dimensional
atmospheric modelling problem is used to
illustrate the solvers.

2. SUMMARY OF METHODS

Among the various numerical methods used for
solving ODE initial value problems, a few are
much more commonly used than others. The Adams
multistep methods (explicit and implicit) are
suitable for nonstiff systems, especially the
implicit Adams methods. Explicit Runge-Kutta
methods are also popular, but are also suitable
only for nonstiff problems. Implicit
Runge-Kutta methods of various types are being
widely studied for use on stiff systems. But
for large stiff problems, the most popular
methods used are based on the so-called backward
differentiation formulas (BDF's), which are
multistep methods first implemented by C. W,
Gear.

In 1968, Gear wrote a subroutine called
DIFSUB [4] for initial value ODE problems, that
included the BDF methods for stiff systems and
implicit Adams methods for nonstiff systems.
This program was reorganized, rewritten, and
improved upon at LLNML, resulting in the GEAR
package [2]. However, when solving a stiff
system of size N, of the general form

y = dy/dt = f(t,y),

this package makes use of the Jacobian matrix of
partial derivatives,

J = 3f/3y,

in full NxN form. Thus the GEAR package is
useful only for nonstiff and fairly small stiff
problems. Because of this, variants of GEAR
were developed later to handle large stiff

problems having some sparse structure in the
Jacobjan. Among these were GEARB (3], for the
case of a banded J; GEARS (5], for a general
sparse matrix J; and GEARBI [6], for a regularly
blocked J, with block-iterative (block-SOR)
treatment of the associated linear systems.
Another variant, GEARIB [7], was written for
linearly implicit problems, i.e. problems of the
form Ay = g(t,y), in which the matrix A and
9g/3y are banded.

As a frame of reference for later
descriptions of algorithms and software, we give
here a brief summary of the methods used in the
GEAR package (and most of its variants ang
descendants), and also LSODE and its variants.
Consider the system y = f(t,y), where y is a
vector of length N, and consider a discrete time
mesh tg, 1y oeey thr oo (of course,
the independent variable need not be time, but
often it is, and we will think of t as a time or
time~like variable here.) For the moment, we
consider the step size h = tn - th-1 to be
fixed. Discrete approximations y, to y(tp)
are to be constructed, with y, given, and yn
will always dencte f(tn,y.).

For nonstiff problems, we use the implicit
Adams (or Adams-Moulton) formulas

qg-1

Yn-1 + thi Ya-i -

i=0

Yn =

Here g (1 < g £12) is the order of
accuracy, and the coefficients 8; depend
only on g. The formula is implicit in that
Bo > 0. Solution of this implicit
equation is done by functional iteration,

Ya(mel) = Yn-l + h By f{ta,¥Yn(m))
q-1

+ h 2 Bl 90-:[]
i=l

where an initial guess (or prediction) yn(q
is obtaimed from an analogous explicit formula.
This iteration is terminated by a convergence
test. Both the step size h and order q are
actually varied during the integration process,
by use of estimates of the local errors
committed, in relation to a user-supplied
tolerance. Changes in h are achieved by
interpolation of the multistep data. Note that
no NxN matrices are involved in this case.

For stiff problems, we use the BDF

q
Z o yn-i + h 8o ¥n

i=]

Yn =

an + h By flta,yq)

where again q is the order (here 1 < g < 5),

and > 0. Stiffness makes functional
iteration fail to converge for the step sizes of
interest, because of strong dependencies in f
upon y. Therefore, we use 8 modified Newton
iteration,

=P Iyn(msl) - yn(m)]
= Yn(m) - 8n - h Bg f{tn,yn(m)) ,

where P is an NxN matrix approximating the
Jacobian of the algebraic system to be solved:

I-hgyd,

(Here I denotes the NxN identity matrix.) Again
a prediction yn(g) is formed from an analogous
explicit formula. This iteration differs from a
true Newton method in that J is only evaluated
periodically. In fact, J is evaluated only at
predicted values yn(q), and only on those
steps where a new value appears necessary, on
the basis of a convergence failure or other
indication. The same value of P (or its LU
decomposition, if used) is used over all
iterations in any one step, and typically also
over several time steps, until a reevaluation of
J and P is called for. (In the case of the
LSODES solver, P is sometimes updated and
LU~decomposed without a reevaluation of J.)
Again, h and q are both varied to meet local
error tolerance requirements.

In applying the BDF method to large stiff
problems, it is important to note that a
numerical solution of the linear system

P = J = of/3y .

Px =T
(x = correction vector, r = residual vector)

can very often easily take advantage of a sparse
structure in P, This is accomplished either
through suitable structured LU decompositions,
or through iterative linmear system methods that
use a given matrix structure. The use of
structure is especially important in solving ODE
systems that come from time-dependent partial
differential equation (PDE) systems by the
method of lines, whereby spatial variables are
discretized, leaving ODE's in time.

Problems in the linearly implicit form
a(t,y) ¥ = g(t,y) arise fregquently. Probably
the most common sources are discretizations (by
the method of lines procedure) of time-dependent
PDE systems in which collocation, Galerkin,
finite element, or other weighted residual
methods are applied to the spatial variables.

In these problems, A is a square matrix, usually
nonsingular. Wwe allow A = A(t,y), but often A
is constant. When A is nonsingular, this is an
ODE system, but otherwise it is a
differential-algebraic system. A numerical
method for such an implicit system can be gotten
from either of the multistep formulas given
above, by multiplying both sides by

A(tn,¥n), replacing A(tR,yn)yn by

g{tn,ys)s and solving the resulting implicit

&

relation for yn.
the form

If the original formula has

Yn=an + hBo¥n,
then we obtain an implicit relation of the form
S(y) z A(tnvy) (y - an) -h 80 Q(tmy) = 0,

to be solved for y = yn, where ap is a
constant vector. Again, a modified Newton
iteration is usually most appropriate for this.
However, it helpful first to introduce the
residual function

r(y) = gltp,y) - Altpy) s,

values of which the user is to supply. Here s
represents an approximation to Yn, and we
specifically define s to be

s = (yn(o) - an) / N Bg .

That is, s is a predicted value of yp that
corresponds to the prediction yn(g) through
the original formula: yp(o) = @n + N By s.

We then find that S(y) and r(y) are related by

S(y) = Altmy) (y - yn(o)) - h Bg tly) .

In analogy with the algorithm for stiff
explicitly given problems, we evaluate the
Newton matrix S'(y) = /3y only at the
predicted value Yngo)' From the above
relation, we find that this matrix is

P 25'(yn(o)) = AltnyYn(e)) - N Bo T'(Yn(o)) ’

where r'(y) similarly denotes the Jacobian of r,
ar/3y. Note that if A is the identity

matrix I, this matrix P reduces to that used in
the case y = f.

The algorithms for solving A y = g arrived
at in this way are numerically reliable only for
certain classes of problems (including in
particular those with non-singular A), and not
for general differential-algebraic systems of
this form [8). However, for most applications
of interest, these methods have been found to
perform well, if not for the original system,
then for a reorganized form of it. ’

For all of these methods, the algorithm for
selecting the step size h and method order o is
basically that used by Gear in [4], based on
asymptotic local error analysis, but with some
modifications. On each step, an estimate of the
local error (at the current order q) is formed
from the difference between the predicted and
final corrected values of y. This gives a value
of h suitable for meeting the given tolerances
at order g (and for redoing the step if the
tolerances were not met). Periodically, one can
also estimate the local error that would be
committed at orders g - 1 and q + 1
(dissallowing one of these choices if q is
currently 1 or the maximum allowed). These
estimates yield values of h suitable for each of
the three orders. Then the new h and q are

selected on the basis of maximizing h. Except
when a step fails the local error tolerance
test, changes in h and g are allowed no more
frequently than every g + 1 steps, in order to
prevent instabilities.

3. THE ODEPACK SOLVERS
3.1 The ODEPACK Concept

The GEAR package and its variants were added
to a 1ist of available general purpose initial
value solvers that was growing quite sizable by
1975. The length and diversity of this list
caused some concern to users and software
developers alike. There was much duplication of
capabilities offered, but at the same time there
was very little in common among the solvers in
terms of either their external appearance or
their internmal structure. This situation was in
sharp contrast to that in other areas in which
"systematized collections" of Fortran routines
were being developed. The earliest examples
were EISPACK [9], for computing matrix
eigensystems, LINPACK [10], for solving linear
systems, and FUNPACK, for certain special
functions.

The idea of a systematized collection of
initial value ODE solvers, tentatively called
ODEPACK, was discussed informally as early as
1974, in workshops attended by people from all
over the world [11]. However, it was quickly
realized that the task was much larger in the
ODOE case than in other areas, partly because of
the complexity of the subject, and partly
because of widely divergent views of what
ODEPACK should look like. Starting in 1976,
attempts were made to reduce the problem by
involving only people at U.S. Department of
Energy laboratories, and LLNL received funding
to study the feasibility of ODEPACK from the
Applied Mathematical Sciences Research Program
under the Office of Basic Energy Sciences in
OCE.

The natural first step, and a necessary
preliminary to any actual development of an
ODEPACK, was the setting of standards for the
interface between the user and the ODE solvers.
The user interface to a solver consists mainly

of the call sequence of the routine the user

must call, together with definitions of the one
or more user-supplied routines called by the
solver. To the extent that solvers for various
problem types and using various methods must all
communicate certain specific things to and from
the user, it is possible to formulate a loose
set of standards for the user interface. An
early proposal is given in [12]. A seguence of
workshops and discussions on user interface
standards for ODE solvers succeeded in producing
a reasonable consensus in 1978 [13,14]. The
resulting tentative interface standard was
achieved only through considerable compromise by
the various participants, which included ODE
software authors and users at various DOE
laboratories.

At that time, it was agreed that several of
the more popular OOE solvers, including GEAR,

GEARB, DE/STEP [15] and RKF45 [16], would be
rewritten to conform with the tentative standard
interface {13], resulting in a small collection
that was at least systematized in its external
appearance., The first result of that agreement
was a package based on the GEAR and GEARB
packages, called LSODE (Livermore Solver for
00E's) [17,18). Subsequently, four variants of
the LSODE solver were written, all in accordance
with the tentative standard interface [13], with
minor modifications. In the meantime,
unfortunately, the other software authors
involved withdrew from the agreement, and so
this collection does not yet have analogous
rewritten versions of their codes.

In what follows, the LSODE package, and the
variants of which have been completed to date,
are summarized. Other variants planned are also
mentioned, and comments on availibility of the
solvers are given.

3.2 LSODE: The Basic Solver

LSODE [17,18] combines the capabilities of
GEAR and GEARB. Thus it solves explicitly given
stiff and nonstiff systems y = f{t,y), and in
the stiff case it treats the Jacobian matrix J =
of /3y as either full or banded, and as
either user-supplied or internally approximated
by difference quotients. By comparison with
GEAR and GEARB, LSODE offers a number of new
features that make it more convenient, more
flexible, more portable, and easier to install
in software libraries. Some of these are the
following:

(a) Through the redesigned user interface,
many new options and capabilities are available,
and others are much more convenient than
before. Some examples are--more flexible error
tolerance parameters, independent flags for
starting and stopping options, internally
computed initial step size, two work arrays in
the call sequence for all internal dynamic work
space, user names for f and J in the call
sequence, easy changing of input parameters in
mid-problem, convenient optional inputs (such as
maximum method order), convenient optional
outputs (such as step and function evaluation
counts), optional provision of derivatives of
the solution (of various orders) at any point,
and real and integer user data space (of dynamic
length) available in the f and J routines (with
no extra burden on the casual user).

(b) The user documentation, which is
contained in the initial comment cards of the
source, is given in a two-level form. A short
and simple set of instructions, with a short
example program, is given first, for the casual
user. Then detailed instructions are given for
users with special problem features or a desire
for nonstandard options. The latter is also
organized so as to allow selective reading by a
user who wants only a fraction of the
nonstandard capabilities.

(c) when stiff options are selected, linear
systems are solved with routines from LINPACK
{10], which is becoming a widely accepted
standard collection of linear system solvers.

(d) Some retuning of various heuristics was
done so that performance should be more relisble
than for GEAR/GEARB. For example, LSODE has no
minumum step size (unless one is specified as an
optional inmput), but has instead a maximum
number of failed attempts at a time step.

(e) The core routine which takes a single
step, called STODE, is independent of the way in
which the Jacobian matrix (if used) is treated.
Thus variant versions of LSODE for other matrix
structures (such as LSODES) will share the same
subroutine STODE.

(f) The writing of all error messages is
done in a small isolated general-purpose message
handler called XERRWV., Two other small
subroutines are user-callable and allow for
optional changing of the output unit number and
optional suppression of error messages. This
trio of routines is compatible with a much
larger error handling package (the SLATEC Error
Handling Package) written at Sandia National
Laboratories [19].

(g) LSODE easily allows a user to interrupt
a problem and restart it later (e.g. in
switching between two or more ODE problems).
Also, using LSODE in overlay mode is very easy,
with no loss of needed local variables.

(h) The various lists of constants needed
for the integration, formerly appearing in a
subroutine called COSET, are now computed (once
per problem). This adds to the portability of
LSODE.

3.3 LSODI: Implicit Systems

The LSODI solver [17], written jointly with
J. F. Painter (LLNL), treats systems. in the
linearly implicit form A(t,y)y = g(t,y), where
A is a square matrix. Many problems, including
PDE's treated by finite elements and the like,
result in such systems, and it is almost always
more economical to treat the system in the given
form than to convert it to an explicit form y =
f. LSODI allows A to be singular, but the user
must then input consistent initial values of
both y and ¥. In the singular case, the system
is a differential-algebraic system, and then the
user must be much more cautious about
formulating a well-posed problem, as well as in
using LSODI, which was not designed to be robust
in this case. LSODI is based on (and
supersedes) the GEARIB package, but corrects a
number of deficiencies, as follows:

(a) The matrices involved can be treated as
either full or banded, by use of the method flag.

(b) The dependence of A on vy is
automatically and inmexpensively accounted for,
whether partial derivatives are supplied by the
user or computed internally by difference
quotients.

(c) when A is singular, the user needs to
supply the initial value of dy/dt, but no later
values. This array (along with the initial y)
is passed through the call sequence.
(Admittedly, correct initial data can be
difficult to obtain for some types of
problems.) When the initial dy/dt is not being
supplied, an input flag instructs LSODI to

compute it on the assumption that A is initially
nonsingular. Thereafter, no such assumption on
A is made, but ill-conditioning in the Newton
matrix P can be a problem when A is singular.

(d) The user-supplied residual routine
includes a flag which allows the user to signal
either an error condition or an interrupt
condition. When an error condition is signalled
(e.g. when a value of y is illegal and the
residual function cannot be evaluated), LSODI
attempts to recover, by updating the Newton
matrix P and possibly cutting the step size, and
attempts to proceed without generating this
condition.

(e) To the maximum extent possible, LSODI

_shares the same user interface as LSODE, and so
reflects all the advantages over GEARIB that
LSODE has over GEAR and GEARB, in terms of
flexibility, convenience, portability, etc.

The differences between the LSODI and LSODE
user interfaces occur primarily in the
user-supplied subroutines. With LSODI, one must
supply a routine to compute the residual
function r(y) = g(t,y) - A(t,y)s for a given t,
y, and s, and another routine to add the matrix
A to a given array. Optionally, the user can
supply a routine to compute the Jacobian matrix
ar/dy. The use of r(y) as the basic
user-supplied quantity, as opposed to
constructing r from values of g and A, is
designed to allow for both computational and
storage economies. Usually, the user can
construct r(y) without forming A explicitly,
thus saving considerably on storage, and often
he can construct it at much lower cost than
LSODI would do so from g and A.

Some examples of the use of LSODE and LSODI
on systems arising from PDE problems can be
found in {18] and {20). In the latter,
experiments by Painter on incompressible
Navier-Stokes problems shed some light on the
difficulties involved with
differential-algebraic systems. A program for
general differential-algebraic systems is
available from L. Petzold [21].

3.4 LSODES: General Sparse Jacobian

The LSODES package solves explicit systems
y = f, but treats the Jacobian matrix J as a
general sparse matrix in the stiff case. ULSODES
was written jointly with A. H. Sherman (Exxon
Production Research Company), and supersedes the
sparse variant of GEAR called GEARS. In LSODES,
linear systems are solved using parts of the
Yale Sparse Matrix Package (YSMP) [22,23].
Recall that the systems to be solved have the
form

Px = 1, P=1-hByd,
where x is a correction vector, h is the step
size, and By is a scalar depending on the
current method order. The solution of these
systems involves several phases:

(a) Determination of sparsity structure.
This is either inferred from calls to the f
routine, inferred from calls to a J routine (if

one is supplied), or supplied directly by the
user. A user input flag determinmes which is
done.

(b) Determination of pivot order. Diagonal
pivot locations are chosen, and the choice is
based on maintaining maximum sparsity. This is
dore by YSMP (ODRV module) [22]. The ordering
algorithm (minimum degree algorithm) operates
only on a symmetric sparsity structure, and in
LSODE? the structure-used for this is that of
J s+ J. :

(c) Symbolic LU factorization of the matrix
P. This 1s based only on sparsity and the pivot
order, and uses the module in YSMP designed for
nonsymmetric matrices with compressed pointer
storage (CDRV module) [23].

(d) Construction of J. This can be done
internally by difference aquotients, or with a
user-supplied routine. In the difference
quotient case, the number of f evaluations
needed is kept to & minimum by a column grouping -
technique due to Curtis, Powell, and Reid [24).
In the other case, the user-supplied routine
provides one column of J at a time, in the form
of a vector of length N (although only the
non-zero elements need be computed and stored),
so that users need never deal with the internal
data structure for J and P. In any case, J is
stored internally in an appropriate packed
form. Evaluations of J are done only
occasionally, as explained below.

(e) Construction of P = I - hggd. In
contrast to LSODE and GEARS, LSODES does not
force a re-evaluation of J whenever the existing
P is deemed unsuitable for the corrector
iterations. Instead, when the value of J
contained in the stored value of P is likely to
be usable (and P is not, only because hgg
has changed significantly), then a new matrix P
is constructed from the old one, with careful
attention to roundoff error. This cuts down
greatly on the total number of J evaluations.

(f) Numerical LU factorization of P. This
is done by YSMP (CDRV module) in sparse form,
and the array containing P is saved in the
process. Because of the absence of partial
pivoting for numerical stability, this operation
can conceivably fail. However, this has only
rarely been observed in practice, and if it does
occur (with a current value of J), the step size
h gets reduced and the difficulty disappears.

(g) Solution of Px = r. This is done by
YSMP (CDRV module) using the existing sparse
factorization of P. Because a modified Newton
iteration is used, many values of r (i.e., many
linear systems) can arise for the same P, and
the separation of the various phases takes
advantage of that fact.

The first three phases, and part of the
fourth (column grouping for difference
guotients), are normally dome only at the start
of the problem. However, the user can specify

.that the sparsity structure is to be

redetermined in the middle of the problem, and
then these operations are repeated.

Actually, the matrix operated on by YSMP is
not P but A = PT, because P is generated in
column order while YSMP reguires the matrix to

be described and stored ir row order. But this
causes no difficulty, because YSMP includes a
routine for solving the equivalent transpose
problem x'A = r' as well as for the direct
problem Ax = b,

3.5 LSODA: Automatic Method Selection

LSODA is a variant of LSODE of yet another
king. It was written jointly with L. R. Petzold
(Sangia-Livermore), and switches automatically
between nonstiff (Adams) and stiff (BOF)
methods, by an algorithm developed by Petzold
(25]. (The suffix A stands for Automatic.)

Thus it is more convenient for users who do not
want to be bothered with the issue of

stiffness. Also, it is potentially more
efficient than LSODE (when used with a fixed
method option), when the nature of the problem
changes between stiff and nonstiff in the course
of the solution. In particular, on the initial
(nonstiff) transient interval that is almost
always present in stiff problems, LSODA uses the
more efficient Adams method. In place of the
method flag parameter of LSODE, the user of
LSODA supplies only a Jaccbian type flag
(specifying whether J is full or banded, to be
user-supplied or internally generated). The
wark space supplied to the solver can be either
static (and thus allow for either method), or
dynamic (and altered each time there is a method
switch, to an amount specified by the solver).

3.6 LSODAR: Rootfinding

LSODAR combines the capabilities of LSODA
with a rootfinder. It allows one to find the
roots of a set of functions gj(t,y) of the
independent and dependent variables in the ODE

_system. (This is sometimes referred to as a
"g-stop" feature.) Thus, for example, it could
be used in a particle tracking problem to
determine when a particle path reaches any of
the walls of a container. LSODAR was also
written jointly with L. R. Petzold, based on an
algorithm [26] developed by K. Hiebert ang
L. F. Shampine (Sandia-Albuquergue). The user
must supply, in addition to the LSODA inputs, a
subroutine that computes a vector-valued
function g(t,y) = (gj, i=1,2,...,NG) such
that a root of any of the NG functions gy is
desired. Of course there may be several such
roots in a given output interval, and LSODAR
returns them one at a time, in the order in
which they occur along the solution. An integer
array tells the user which gj (if any) were
found to have a root on any given return. wWith
LSODAR, ‘it is especially important to choose the
tolerances conservatively, so that numerical
errors in the computed solution y(t) do not
deceive the rootfinding algorithm.

3.7 Future Additions

Several other solvers will be added to the
QDEPACK collection in the near future, as they
are developed in response to the needs of
gifferent classes of problems. In particular,

the following two solvers are nearly complete
and will soon be available:

(a) LSOIBT. This resembles LSODI in that it
solves problems of the form A(t,y) ¥y = a(t,y),

but it assumes a block-tridiagonal structure for

all the matrices involved. It then uses a
linesr system solver tailored to
block-tridiagonal systems. LSOIBT was developed
from LSODI by C. Kenney (China Lake Naval
weapons Center). It was motivated by the method
of moving finite elements for parabolic POE
systems, which generates ODE systems A ¥ = g
with block-tridiagonal structure.

{b) LSODIS. This also solves the Ay =g
problem, but uses a general purpose sparse
matrix treatment of the linear systems, as in
LSODES. LSODIS was developed from LSODI and
LSODES by S. Balsdon (University of Texas at
Austin) [27], and was also motivated by finite
element methods.

In addition, plans are under way to rewrite
(and algorithmically improve upon) other
existing solvers for addition to ODEPACK.

Solvers to be so revised include GEARBI [6] and
EPISODE [28].

3.8 Availability

The ODEPACK solvers are being made
available by way of the National Energy
Software -Center (Argonne National Laboratory,
9700 South Cass Ave., Argonne, IL 60439,
U.S.A.). NESC operates on a subscription
basis, and requests shoulo be handled by the
NESC installation representative at each site.
Separate_single and double precision versions
are availaoie.

To date, one or more members of the ODEPACK
collection have been sent on reaquest to over 200
sites, and the acceptance of the solvers has
been extremely positive.

4. AN EXAMPLE PROBLEM

In order to illustrate the various solvers
described above, and to demonstrate their
relative merits on a realistic problem, we
consider here an example problem. The problem
is a simple atmospheric model with two chemical
species undergoing diurnal kinetics and
transport in two space dimensions. The
independent variables in the PDE system are
horizontal position x, altitute z (both in
kilometers), and time t (in sec), with

0 <x <20,

A

30 <z < 50,

0

{A

t < 86400 (1 day) .
The dependent variables are

cl(x,z,t) = the concentration of the
oxygen singlet [0] , and

c?(x,z,t) = concentration of ozome (O3]

(both in moles/cm3). The concentration of

¥,

molecular oxygen [0;] is assumed constant.
The equations of the model are:

i i i1 2
(Kv(z)cl)z + Khexx + R (c,c ,t),-
(i=1,2),

i
Ct =

where the subscripts t, z, and x denote partial
derivatives. Here Rl and RZ represent the
chemistry and are given by

RL(eL,c2,t) = -(iq + kpe2)el + k3 (t)c?
' + kg(t)*7.41016
R2(cl,c2,t) = (ky - kpc2)el - ks(t)e? .

The various coefficients are as follows:

Ky(z) = 1078 « exp(z/5) , Ky = 41076,

k] = 6.03 , ko = 4.66°1016 |
exp[-7.601/sin(Tt/43200)], t < 43200
k3 (t) = '
. 0, t > 43200
exp(-22.62/sin(Tt/43200)], t < 43200
ka () { _
0, t > 43200

Both ¢l and c2 are required to satisfy
homogeneous Neumann boundary conditions (zero
normal derivatives) along all the x and z
boundaries. The initial conditions (at t = 0)
are

Tl a1f R Q-2 B2,
c2 = 1012 (1 - %2 + %4/2)(1 - %2 4 34/2),

X = (x - 10)/10, Z = (z - 40)/10 ,
which represent mildly peaked distributions
satisfying the boundary conditions. :

The solution to this problem is a peaked
distribution for both variables, changing in
time and diffusing somewhat in all directions.
With respect to time, the ozone concentration
[03] varies only a few percent, but [0] has a
sharp initial drop, then rises by over three
orders of magnitude, and finally drops
essentially to zero at sunset.

To solve the above system mumerically, we
apply the method of lines using a regular
rectangular mesh with constant mesh spacings

& = 20/(My=1) , &z = 20/(Mp-1) .

Thus the discrete mesh consists of points
(Xj,Zk) with

(3-1) &
30 + (k-1) &2 (k = 1,2,...,Mp) ,

Xj (j = 1127'-'1MX) s

2k

and the discrete variable c',k is an
approximation to cl(xj,zk). The spatial

cerivatives are approximsted by standard 5-point
- central differences, and the boundary conditions

are similarly replaced by difference relations.
To illustrate, consider a nonuniform diffusion
term in one dimension, (K(z) c;(z2)); . The
value of this term at & point z = 2z, 1s given by

K(Zk41/2) €2(Zk41/2) = K(2ko1/2) C2(2Kk_1/2)
(Zkels2 = 2k-1/2)

-where
cp(zKy1/2) = (eke1 = Ck)/(zk+] 7)o
cplzi.1/72) = (o - ck_l)/(zk - zk_]) ’

Zice1/2 T (2a) +)72,
z 172 = (zk-l + zk)/2 .

(Uniformity of the mesh is not assumed in these
difference formulas.) The boundary conditions
in the 2-D problem are approximated by setting

ok = G2,k (all k)
for the boundary segment xj = 0, and similarly
for the other three boundary segments. These
relations allow one to form a well-defined ODE
for each of the cfi . The resulting ODE
system y = f(t,y) has size N = 2MM,. It is
quite stiff because of the presence of a short
kinetics time constant (about 1/6 sec). The
initial value vector yy is taken from the
initial condition functions given above. The
system Jacobian J is sparse, with roughly
12MM; = 6N nonzero elements. As a band
matrix, with component ordering first by
species, then by x, and lastly by z, it has a
half-bandwidth of 2M,, and thus a full
bandwidth of 4My+l. (It is important to use
such an ordering if minimal bandwidth is
important; an ordering by grid points and then
by species produces a Jacobian that is not
banded at all.)

We consider two cases,

My =M = 10,

As to accuracy, a crude model of this type calls
for no more than a few significant’figures. To
be conservative in recognizing that tolerance
parameters are applied to local errors, which
can accumulate into global error, we might
impose a local relative tolerance of 10-4. we
must also specify f positive absolute tolerance
on the values of ¢* because it decays to
negligible values at night. A reasonable
absolute tolerance is 10-2,

Three of the ODEPACK solvers are suitable
for this particular problem--LSODE, LSODA, and
LSODES. In addition, the older package GEARBI
is certainly suitable, and in fact was motivated
by exactly this type of problem. Recall that
LSODES uses a general sparse treatment of the
Jacobian matrix, GEARBI uses block-SOR, while
LSODE and LSODA will (in this case) treat the

and My = My = 20,

Jacobian as banded. The problem was set up for
each of these four solvers and run first on a
CDC-7600 computer, then on a Cray-1 computer.

On the 7600, only the 10 by 10 grid problem was
run, as the larger problem could not be
accommodated by all of the solvers within the
Small Core Memory (about S7000 words). For all
but GEARBI, both the user-supplied Jacobian
option and the internal difference quotient
Jacobian option were tested. (GEARBI has no
difference quotient option.) The results of the
runs on the CDC-7600 are given in Table 1. The
results of the Cray-l runs are given in Table 2
for the 10 by 10 grid, and in Table 3 for the 20
by 20 grid. The tabulated quantities are:

R.T. = CPU run time in sec

NST = number of steps

NFE = number of f evaluations

NJE = number of J evaluations

NLU = number of LU decompositions
.S, = total size of work space arrays

In the tables, USJ denotes the user-supplied
Jacobian option, and DQJ denotes the internal
difference quotient Jacobian option. An earlier
comparison test on this problem is in {5].

Table 1. Results of kinetics-transport test
problem (10x10 grid) on the CDBC-7600.

Solver R.T. NST NFE NJE NU Ww.S.

LSODE 23.2 344 519 68 68 14,242
(Usd)

L.SODE 28.4 337 3338 69 69 14,242
(0QJ) v

LSODA 21.3 339 584 55 55 14,242
(UsJ) .

LSQDA 24.6 339 2795 55 55 14,242
(DQRJ) ‘

LSODES 13.1 364 529 10 70 12,455
(USJ) .

LSODES 13.5 369 602 8 72 12,664
(DQJ)

GEARBI 6.3 316 526 50 50 3,004

Table 2. Results of kinetics-transport test
problem (10x10 grid) on the Cray-1.

Solver R.T. NST NFE NJE NU W.S.

LSODE 2.52 344 520 68 68 14,242
(UsJ)

LSODE 5.16 337 3463 72 72 14,242
(DQJ)

LSODA 2.85 344 587 54 54 14,242
(Usd)

LSODA 4.78 340 2794 S5 55 14,242
(0QJ)

LSODES 4.86 364 533 14 71 12,455
(Usd) '

LSODES 5.34 378 641 -1l 76 12,664
(0Q)

GEARBI 3.04 3lé 526 SO 50

3,004

Tgble 3. Results of kinetics-transport test
problem (20x20 grid) on the Cray-1.

Solver R.T. NST NFE NJE MU W.S,

LSODE 19.8 40l 604 B6 B6 104,842
(UsJ)

LSODE 43.1 402 7647 B7 B7 104,842
(0QJ)

LSODA . 17.1 312 550 52 52 104,842
(Us3y

L.SODA 35.4 344 5486 61 61 104,842
(0QJ)

LSODES 43.2 385 577 10 90 61,033
(UsJ)

LSODES 42.2 390 638 g8 77 61,842
(DQJ)

GEARBI 16.4 348 544 58 58 12,004

Several points of interest can be noted in
these tables. '

(a) First, for each of the two problems, the
number.of steps does not vary greatly from
solver to solver, because that is determined
almost entirely by the accuracy reguirement, and
the accuracy achieved is much the same for all
these runs. Also, comparison of the 20x20 grid
results with the 10x10 grid results shows that
the latter have errors (due to the spatial
discretization) of up to 2%.

(b) For each problem, the performance
characteristics of LSODE and LSODA are similar,
as expected, since both use a banded Jacobian
here. In most cases, LLSODA is faster, primarily
because it uses the cheaper nonstiff (Adams)
method on the initial transient of the problem,
switching to the BOF at about t = 3.6. For the
same reason, the number of Jacobian evalustions
is significantly lower for LSODA than LSODE.
This advantage is offset somewhat by a larger
average number of f evaluations per step for
LSODA during the integration of the transient
(due to the need in LSODA for estimates of the
Lipschitz constant).

(c) For LSODE and LSODA, the use of a
difference quotient Jacobian incurs some
additional expense over the user-supplied
Jacobian, owing to its cost of 4My+l (= 4l or
8l1) additional evaluations of f for each
evaluation of J. On the 7600, this cost penalty
is never more than 25%, but on the Cray, it is
65% to 118%. The reason is that the band matrix
solvers on the Cray (which are highly optimized
versions of the LINPACK routines) are up to 10
times faster than on the 7600, while f
evaluations are only about twice as fast on the
Cray. (This illustrates the speed gains
possible with vector operstions on the Cray, in
contrast to the evaluation aof f here, which was
left in a form that does not vectorize at all.)
Thus on the Cray, the cost of the f and J
evaluations is a much larger fraction of the
total. For example, for LSODE (USJ) on the
10x10 grid problem, the cost of the f

'Y

evaluations is about 4% of the total on the
7600, and about 19% of the total on the Cray.
Clearly, it pays to generate a closed-form
Jacobian routine when using LSODE or LSODA te
solve a stiff system on the Cray.

(d) The LSODES results show a significant
speedup on the 7600 over LSODE and LSODA (by
factors of 1.6 to 2.1), but none (or nearly
nore) on the Cray. The reasonis that, in
contrast to the band matrix solvers, the sparse
matrix solvers do not show more than about a
2-to-1 speedup in moving from the 7600 to the
Cray. The speed advantage of LSODES on the 7600
appears to be due entirely to its algorithm of
saving old values of P, and thus cutting down
greatly on the number of J evaluations, which
constitute a sizable fraction of the total cost
on the 7600.
is used for 26 to 49 steps, as opposed to only 5
to 6 steps for LSODE and LSODA. For a problem
that is similar but more costly in function
evaluations, this behavior would lead to a
significant cost advantage for LSODES on the
Cray as well as on the 7600.

(e) On both computers and for both problems,
the cost penalty for a difference guotient
Jacobian is quite small for LSODES (at most
10%). This is partly because there are so many
fewer J evaluations, and partly because each
evaluation of J by difference quotients in
LSODES costs only 8 evaluations of f here,
independent of the grid size.

(f) The storage requirement for LSODES is
lower than for LSODE or LSODA, by around 12% on
the 10x10 grid, and around 41% on the 20x20
grid. This trend continues for finer meshes.
For courser meshes, LSODES would have no storage
advantage, reflecting its need for sparsity
information arrays and the fact the matrix P is
stored separately from its LU decomposition.
Thus for the present problem, on the 7600, and
on the Cray with difference quotient Jacobian
option, LSODES is competitive with LSODE or
LSODA in run time and superior in storage.

{g) Overall, the best performance on this
problem, however, is that of GEARBI. This
should not be a surprise, since the Jacobian has
a very regular block structure of which the
block-SOR method in GEARBI is taking full
advantage, both in storage and computation. The
LU decompositions here are only those of the
block diagomal part of the Newton matrix (with
2x2 blocks). The total number of block-SOR
iterations for the 10x10 grid was 607, or an
average of less than 2 per step. For the 20x20
grid this cost rose to 972 iterations, or an
average of 2.7 per step. Note that, because
there is little opportunity for use of vector
operations, the cost for the 10x10 problem
dropped by only a factor of 2.1 in going from
the 7600 to the Cray, making the GEARBI run
times nearly equal to those of LSODE (USJ) and
LSODA (USJ). (A more careful organization of
the block-SOR algorithm might yield greater
speeds on the Cray.) The storage advantage of
GEARBI is tremendous, though - a factor of 4.7
for the 10x10 grid and 8.7 for the 20x20 grid.
Thus for problems of this general type, which

Note that each computed value of J ,

are amenable to block-iterative matrix
treatment, solution by GEARBI or s similar
algorithm appears strongly competitive with
other approaches.

In closing, we mention some truly large
problems to which the GEARBI package has been
applied. 1In the early 1970's, a number of
atmospheric models were developed at LLNL,
involving chemical kinetics and transport in up
to 2 space dimensions. Typically, the number of
chemical species was 5 to 20, and typical 2-D
mesh sizes were about 40 by 40. Thus when
finite differenced, these problems generated ODE
systems of sizes exceeding 10,000. The smallest
kinetics time constants were typically in the
range of milliseconds to microseconds, while the
largest diffusion time constants were measured
in years, making these systems extremely stiff.
The GEARBI package, and an extension of it using
Large Core Memory on the CDC-7600 (about 400,000
words), were successfully used to solve these
problems in s wide variety of applications
[29,30,31].

REFERENCES

[11 A. C. Hindmarsh, A Collection of Software
for Ordinary Differential Eaguations, in the
Proceedings of the ANS Topical Meeting on
Computational Methods in Nuclear
Engineering, Willlamsburg, VA, April 23-25,
1575.

[2] A. C. Hindmarsh, GEAR: Ordinary
Differential Equation System Solver, LLNL
Report UCID-30001, Rev. 3 (December 1974).

[3} A. C. Hindmarsh, GEARB: Solution of
Ordinary Differential Equations Having
Banded Jacobian, LLNL Report UCID-30059,
Rev. 2 (June 1977).

[4} C. w. Gear, Numerical Initial value
Problems in Ordinary DIfferential Eguations
(Prentice-Hall, Englewocod Cliffs, NJ,
1971), pp. 158-166..

[5] A. H. Sherman and A. C. Hindmarsh, GEARS:
A Package for the Solution of Sparse Stiff
Ordinary Differential Eaquations, in A. M.
Erisman, K. W, Neves, and M., H. Dwarakanath
(eds.), Electrical Power Problems: The
MathematIcal Challenge (S1AM, Philadelphia,
19807, pp. 190-200.

[6] A, C. Hindmarsh, Preliminary Documentation
of GEARBI: Solution of ODE Systems with
Block-Iterative Treatment of the Jacobian,
LLNL Report UCID-30149 (December 1976).

[7} A. C. Hindmarsh, Preliminary Documentation
of GEARIB: Solution of Implicit Systems of
Ordinary Differential Equations with Banded
Jacobian, LLNL Report UCID-30130 (February
1976).)

[8] L. R. Petzold, Differential/Algebraic
’ Eauations are not ODEs, SIAM J. on Sci. and

Stat. Computing 3 (1982), pp. 367-384.

{ 91 B. 7. Smith, J. M. Boyle, B. S. Carbow, Y.
Ikebe, V. C. Klema and C. B. Moler, Matrix
Eigensystem Routines--EISPACK Guide,

Lecture Notes in Computer Science, Vol. 6,
Edition 7 (Springer-verlag, New vork, 1576).

{10] J. J. Dongarra, J. R. Bunch, C. B. Moler,
and G. W. Stewart, LINPACK User's Guide
(SIAM, Philadelphia, 1579).

(11] G. D. Byrne, A Report on the ODE workshop,
Held at San Antonio, Texas, January 26-28,
1976, in the ACM-SIGNUM Newsletter, Vvol.
11, No. 1 (May 1576), pp. 27-28.

{12] A. C. Hinomarsh and G. 0. Byrne, A Proposed
ODEPACK Calling Sequence, LLNL Report
UCID-30134 (May 1976).

[13) A. C. Hindmarsh, A Tentative User Interface
Standard for ODEPACK, LLNL Report
UCID-17954 (October 1978).

[14] A. C. Hindmarsh, A User Interface Standard
for ODE Solvers, in the Proceedings of the
1979 SIGNUM Meeting on Numerical Ordimary
Differential Eauations, April 1979, univ.
of Illinois (Dept. of Comp. Sci.) Report
79-1710, R. D. Skeel (ed.), 1979: also in
the ACM-SIGNUM Newsletter, vol. 14, No. 2
(Jure 1979), p. 1l.

[15] L. F. Shampine and M. K. Gordsn, Solution
Oof Ordinary Differential Equations - The
Initial value Problem (W. H. Freeman ang
Co., San Franmcisco, 1975).

(le]) G. €. Forsythe, M. A, Malcolm, and C. B.
Moler, Computer Methods for Mathematical

Cog%utationé‘?PrentiEe-HEIT, Englewood
Cilfts, NJ, 1977), pp. 129-l147.

[17] A. C. Hindmarsh, LSODE and LSODI, Two New
Initial value Ordinary Differential
Equation Solvers, in the ACM-SIGNUM
Newsletter, Vol. 15, No. & (Decemper 1980),

-pp. 10-11.

(18] A. C. Hingmarsh, ODE Solvers for Use with
the Method of Lines, in R. Vichnevetsky ang
R. S. Stepleman (eds.), Advances in
Computer Methods for Partial Differential
Equations - IV (IMACS, New Brunswick, NJ,

18817, pp. 3I2-316.

(191 R. E. Jores, SLATEC Common Mathematical
Library Error Handling Package, Sandia
National Laboratories .Report SAND78-1189
(September -1978).

{20] J..F;:Painter,'Solving the Navier-Stokes
" Equations with LSODI and the Method of
‘Linei, LLNL Report UCID-19262 (December
1981). ’

-10-

(21]

(22)

(23]

(24]

L. R. Petzold, A Description of DASSL: A
0ifferential/Algebraic System Solver, in
the Proc. of the IMACS 10th world Congress,
Montreal, August 8-13, 1982,

S. C. Eisenstat, M. C. Gursky, M.
H.Schultz, and A. H. Sherman, Yale Sparse
Matrix Package: I. The Symmetric Codes,
Research Report No. 112 (Dept. of Comouter
Sciences, vale University, 1977).

S. C. Eisenstat, M. C. Gursky, M. H.
Schultz, and A. H. Sherman, Yale Sparse
Matrix Package: II. The Nonsymmetric
Codes,. Research Report No. 114 (Dept. of
Computer Sciences, Yale Universtiy, 1977).-

A. R, Curtis, M. J. D. Powell, and J. K.
Reid, On the Estimation of Sparse Jacobian
Matrices, J. Inst. Math, Applic. 13,

" (1974), pp. 117-115.

[25)

(26]

(27]

L. R. Petzold, Automatic Selection of
Methods for Solving Stiff and Nonstiff
Systems of Ordinary Differential £ouations,
Sandia National Laboratories Report
SAND80-8230 (Sentember 1980).

K. L. Hiebert and L. F. Shampine,
Implicitly Defined Output Points for
Solutions of ODE's, Sandia National
Laboratories Report SANDBO-0180 (February
1580).

M. K. Seager and S. Balsdon, LSODIS, A
Sparse Imolicit OOE Sclver, in the Proc. of

"~ the IMACS 10th World Congress, Montreal,

[28]

August B8-13, 1982,

A. C. Hindmarsh and G. D.Byrne,
Applications of EPISODE: An Effective
Package for the Integration of Systems of
Ordinmary Differential Equations, in L.

Lapidus and W. E. Schiesser (eds.),

[29]

(30]

(311

Numerical Methods for Differential Systems
(Academic Press, New York, 1576), pp.
147-166.

J. S. Chang, A. C. Hindmarsh, and N. K.
Madsen, Simulation of Chemical Kinetics
Transport in the Stratosphere, in R. A.
willoughby (ed.), Stiff Differential
Systems (Plerum Press, New York, 1574), pp.
51-65,

M. C. MacCracken, DOT-CIAP Final Report,
LLNL Report UCRL-51336 (May 1975).

M. C. MacCracken, 0. J. wWuebbles, J. J.
walton, w. H. Duewer, and K. E£. Grant,
Livermore Regional Air Quality Mooel: 1.
Concept and Oevelooment, J. of Aopl.
Metercloay, 17 (1978), 254-272.

ur

r>

